
The Medical Evaluation of Living Kidney Donors 2022

David Serur, MD Medical Director, Kidney Transplantation Hackensack Univ Med Ctr May, 2022

Hippocratic oath-5th century BC

- "I will use treatment to help the sick according to my ability and judgment, but never with a view to injury and wrong-doing"
- "I will abstain from all intentional wrong-doing and harm, especially from abusing the bodies of man or woman"

More Modern

- "The eternal providence has appointed me to watch over the life and health of Thy creatures...lofty aim of doing good to Thy children"—Maimonides 12th century
- "primum non nocere" (Do no harm)—17th century
- "Practice two things in your dealings with disease: either help or do not harm the patient"—19th century surgeon Thomas Inman

Risk to the Donor

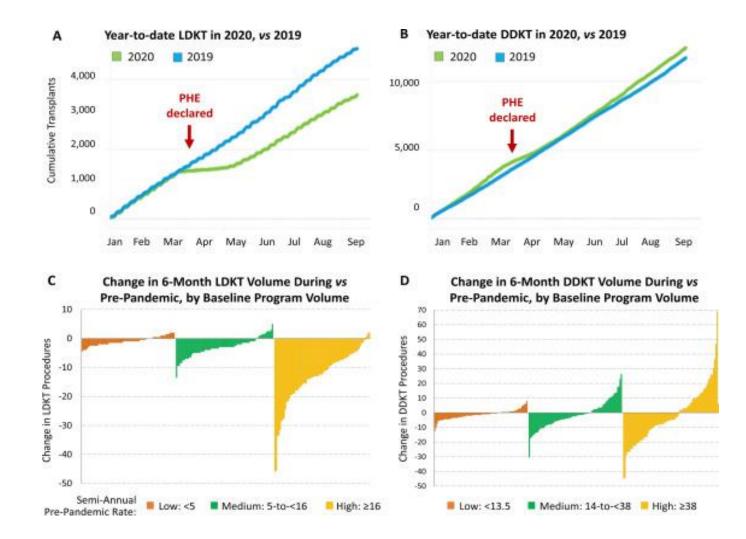
- Immediate: Risk of death
- Immediate: Surgical Complication Risk
- Long term: ESRD risk
- What level of Risk is acceptable? 1%, 2%, 5%?

```
Annual mortality risk (AMR)
Grand Prix racing: 1 in 100
Motorbike racing: 1 in 1,000
Canoeing: 1 in 10,000
Soccer & rugby: 1 in 100,000
Running/jogging: 1 in 1 million
Swimming: 1 in 1 million
Risk of dying in a car accident: 1 in 6,700
Recreational climbing - Annual mortality risk of 1 in 1,750
Expert mountain climbers: Annual mortality risk of 1 in 167
Boxing Mortality rate: 0.0455 (/100 participants)
```

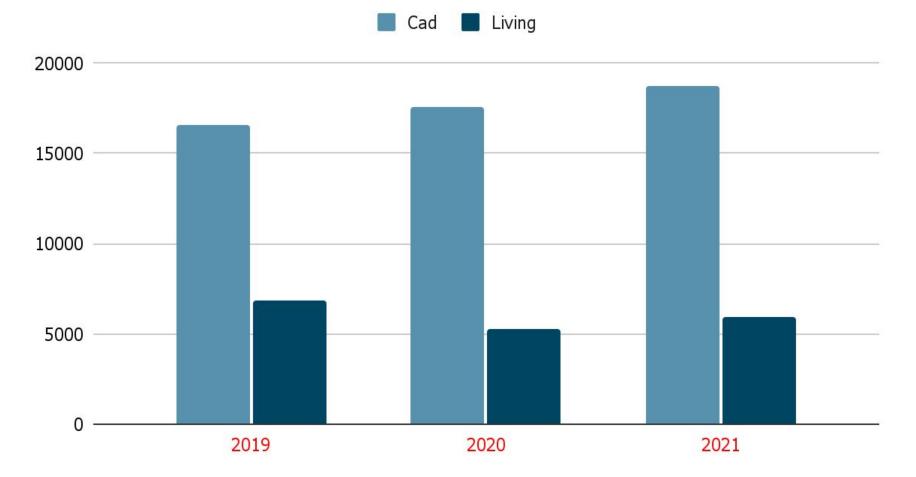
Source: http://www.besthealthdegrees.com/health-risks/

Kindney Transplants on the Rise

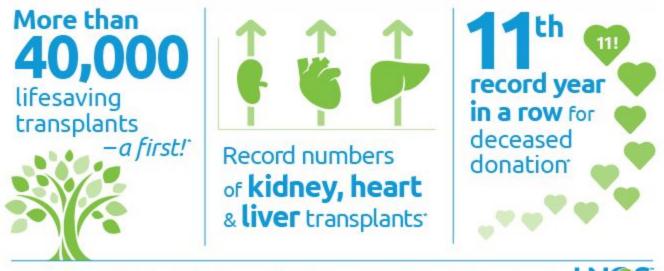
Number of organ transplants in the U.S. (1988-2020)


Source: U.S. Department of Health and Human Services

https://docs.google.com/presentation/d/1LFXSfcopliYg_C jUnLRsCAzyanwbXO4-1cmzdferKRs/edit#slide=id.g10d5 a8dd04e_0_0



statista 🗹


Kidney Transplantation During the COVID-19 Pandemic

US Transplants

2021 Most lives ever saved in one year

*Based on OPTN data as of Jan. 10, 2022. Data subject to change based on future data submission or correction.

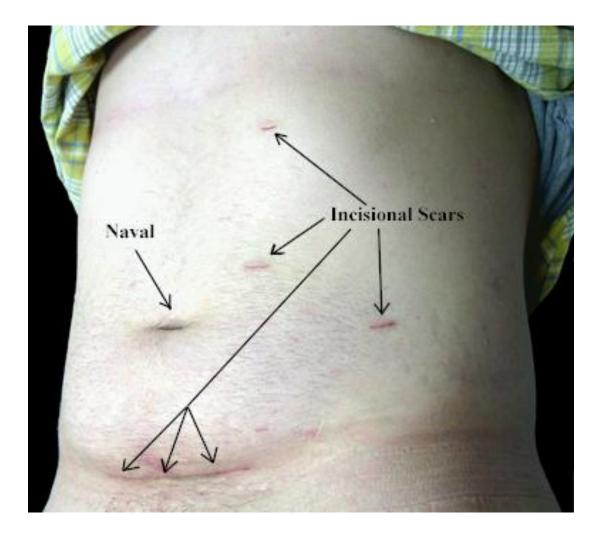
UNOS 2022

Living Donor Evaluation (JSWG) Complete history and physical □ Height, weight, BMI □ BP at two different settings on different days □ General laboratory to assess: hematologic status coagulation electrolytes □ fasting lipids and glucose □ liver status **ECG** □ Age appropriate evaluation for cancer

Kidney Evaluation

- Urinalysis with microscopy; UC
- 24 hour urine for albumin excretion and creatinine clearance
- Anatomic Testing for anatomy definition (CT, MRA)

Case

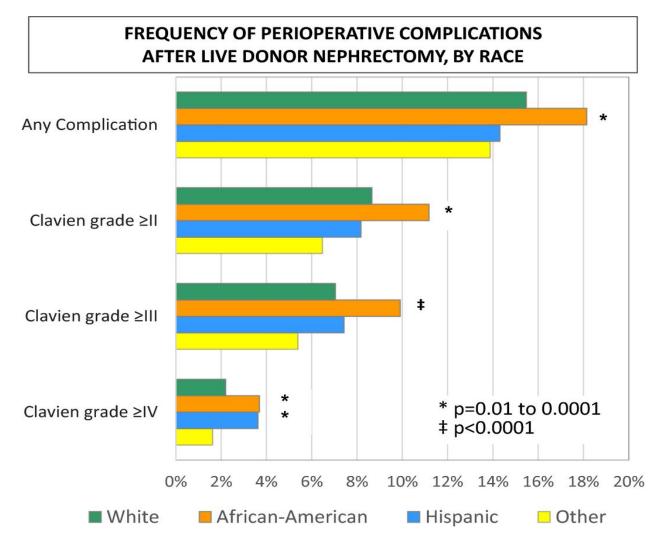

• 37 yr old AA female, mother of 2, wishing to donate to her father (DM). She asks: What are my risks of dying? Complications? Kidney failure?

Donor Mortality

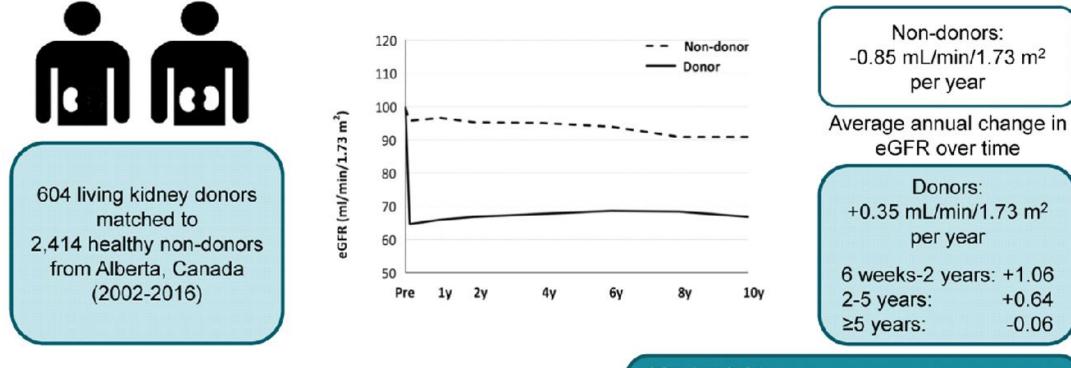
0.03% (30 days) .007% (inpatient stay) (appendectomy 0.2%, Choley 0.4%)


> *Davis, CL. Living Kidney Donors: Current State of Affairs. Advances in Chronic Kidney Disease, 2009; *Lentine, et al. American Journal of Transplantation Volume 16, Issue 6, pages 1848-1857, 10 MAR 2016

Traditional Lap Nephrectomy


Single Port Lap Nephrectomy

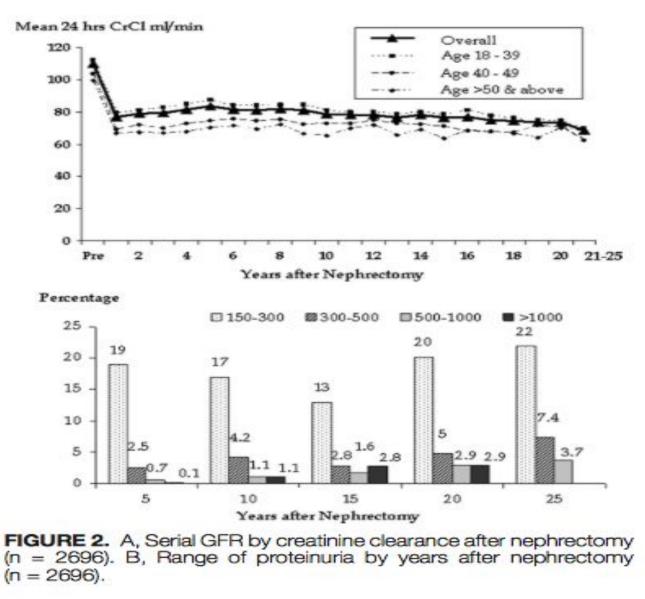
Perioperative Complications After Living Kidney Donation: 15 K pts (ICD codes), 7.3% clavien 3 or above (2.4% ICU, 0.007% inpatient mortality)

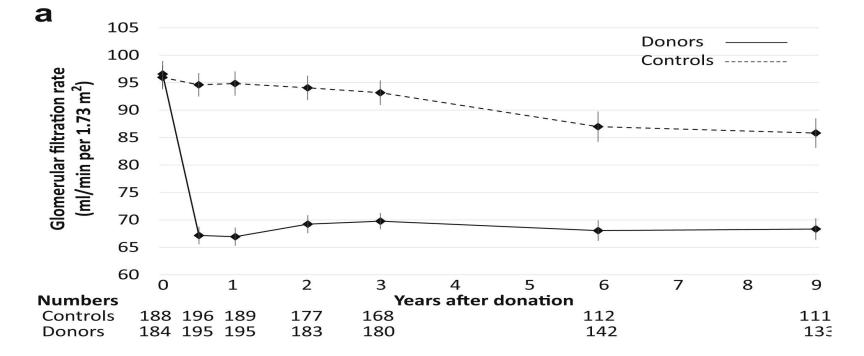

Complications

Clav 3: Re-op, endos, IR proced Clav 4: ICU, organ failure American Journal of Transplantation Volume 16, Issue 6, pages 1848-1857, 10 MAR 2016 DOI: 10.1111/ajt.13687

Complication	Comment	No	
Major			
Jejunal perforation	Reoperation day 10, intensive care, respirator	1	
lleum perforation	Reoperation day 5	1	
Retained sponge	Reoperation day 2, pulmonary embolism	1	
Retroperitoneal hematoma	Reoperation day 0, day 1 and day 4; pulmonary embolism (1)	3	
Ureter stump bleeding	Reoperation day 7	1	
Port bleeding	Reoperation day 0	1	
Port hernia, incarcerated bowel	Reoperation day 6, no resection necessary	1	
Pneumothorax	Chest drain	2	
Wound rupture	Reoperation day 0	1	
Wound infection	Reoperation in general (7) or local (5) anesthesia	12	
Lymphocele	Reoperation day 14 (1); percutan drainage (1)	2	
Postoperative hematemesis	Gastroscopy, blood transfusion, elevated cardiac enzymes	1	2.9 % Major donor
Incisional hernia	Reoperation month 14, month 15 and month 17	3	-
Total major complications		30	complications, Clavien 3
Minor			(reop, ICU, etc). Chart rev
Pneumothorax	No chest tube required	5	
Pneumonia	No need for respiratory support	33	
Wound infection	Only requiring antibiotics	26	5
Other skin infection	Subcutan epidural catheter abscess (2); erysipelas (1)	3	
Urinary tract infection		103	
Urinary retention		2	
Blood transfusion		4	
Cardiac arrhythmia	Atrial fibrillation (2), transient asymptomatic asystole (2)	4	
Deep venous thrombosis	Double vena Cava (1)	1	Morbidity and Mortality in 1022 Consecutive Living
Acute hepatitis	Possibly related to drug toxicity	4	Donor Nephrectomies: Benefits of a Living Donor Registry.
Total minor complications		184	Mjoen, Geir; Oyen, Ole; Holdaas, Hallvard; Midtvedt, Karsten; Line, Pal-Dag
Total complications		214	Transplantation. 88(11):1273-1279, December 15, 2009. DOI: 10.1097/TP.0b013e3181bb44fd

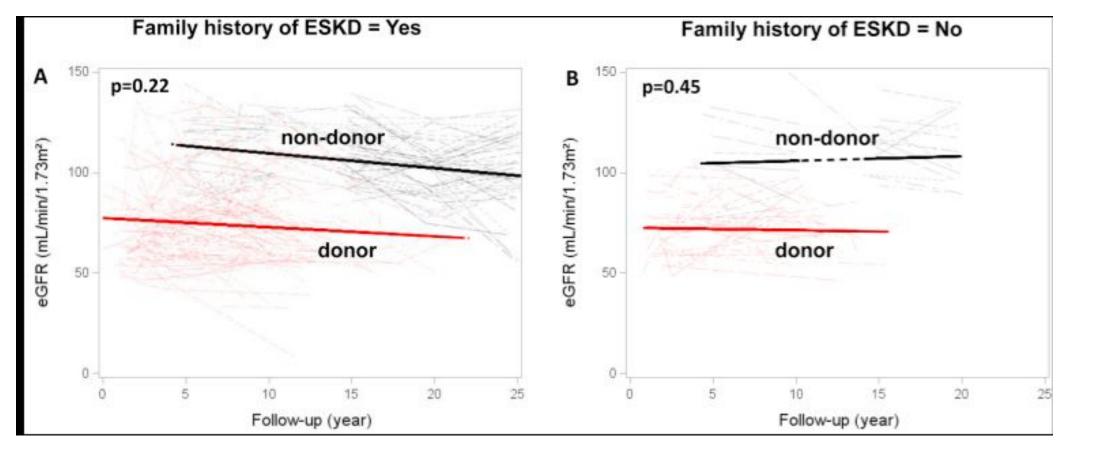
Changes in Kidney Function Following Living Donor Nephrectomy


Lam et al., 2020


CONCLUSION:

The function in the remaining kidney of a living donor on average initially increases by 1 mL/min/1.73 m² per year which we attribute to glomerular hyperfiltration; however, this begins to plateau by 5 years postdonation.

OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF NEPHROLOGY


Long Term GFR & proteinuria

Kasiske, et al, Kidney International July 2020, Pages 168-175, prospective 9 yr F/U. PTH and UA bit higher, small artery elastic less

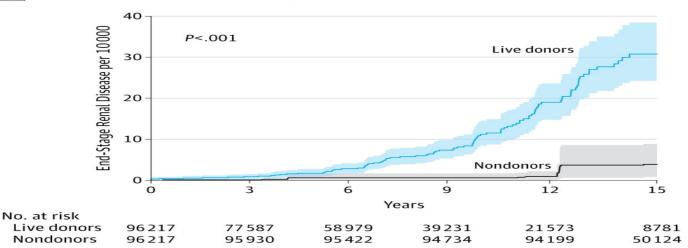
Ortigosa-Goggins M, Garg AX, Li L, Doshi MD. Donor Family History of ESKD and Long-term Outcomes Among African American Living Kidney Donors: A Retrospective Cohort Study. Kidney Med. 2021 Feb 6;3(2):223-230.e1.

139 AA donors with first degree relative with ESKD, 11 yr FU

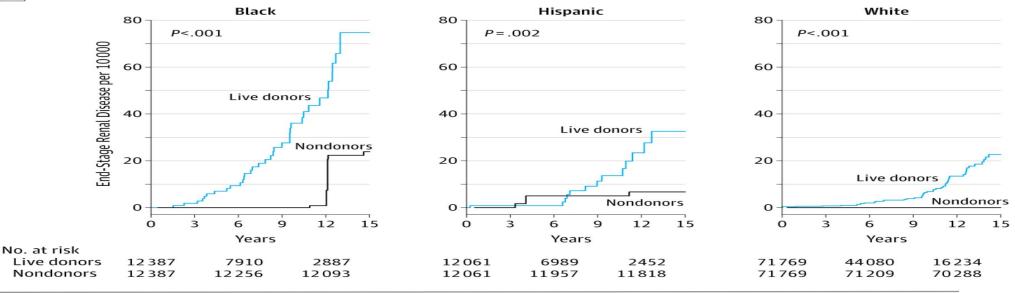
Risk of End-Stage Renal Disease Following Live Kidney Donation (97,000 donors vs healthy nondonors). USA Study

General population lifetime risk for ESRD: 3.2%

Donor ESRD: 0.9%

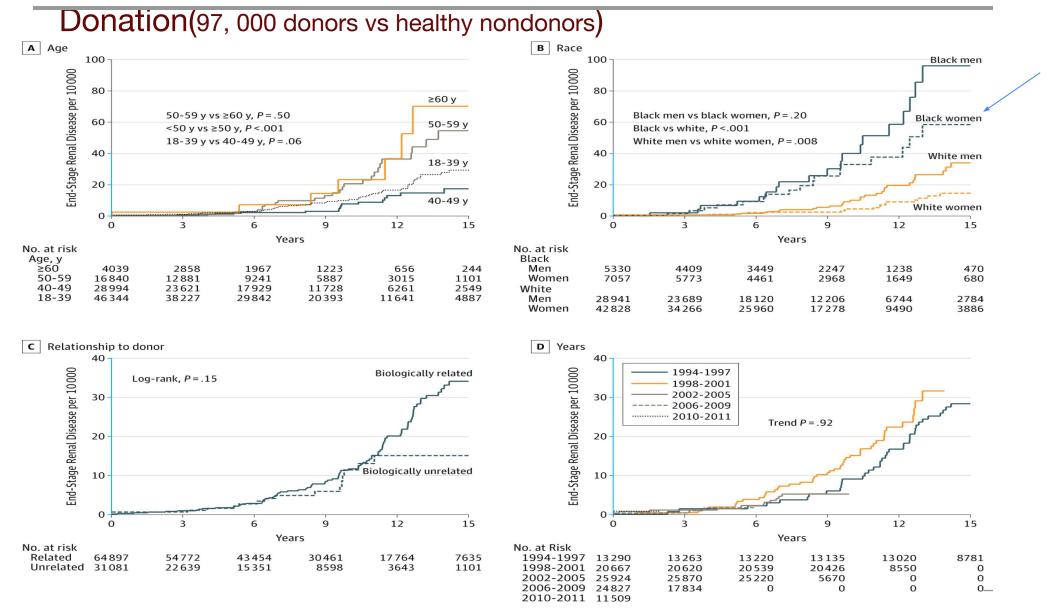

Nondonor ESRD: 0.14%

JAMA. 2014;311(6):579-586

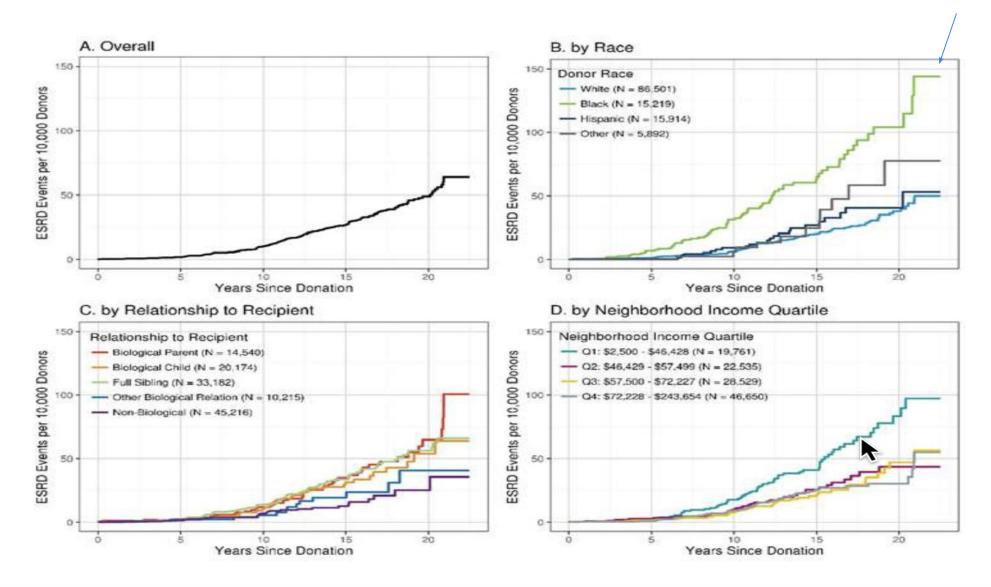

Risk of End-Stage Renal Disease Following Live Kidney Donation (97,000

donors over 20 years vs nondonors)

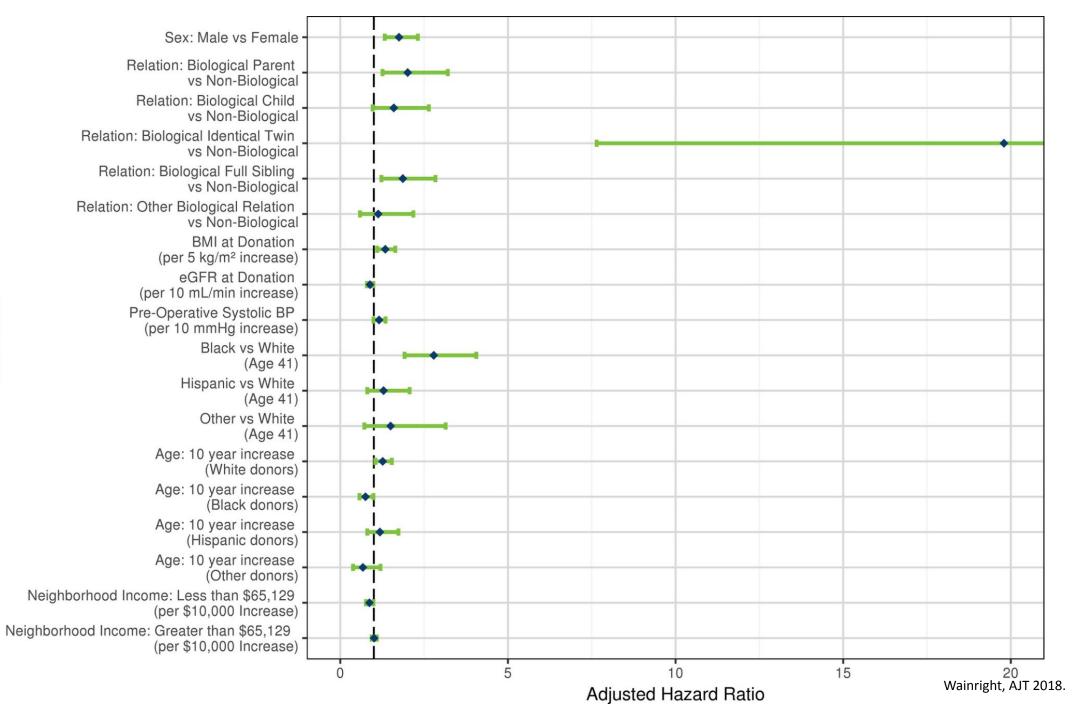
A Cumulative incidence of end-stage renal disease



B Cumulative incidence of end-stage renal disease by race/ethnicity


JAMA. 2014;311(6):579-

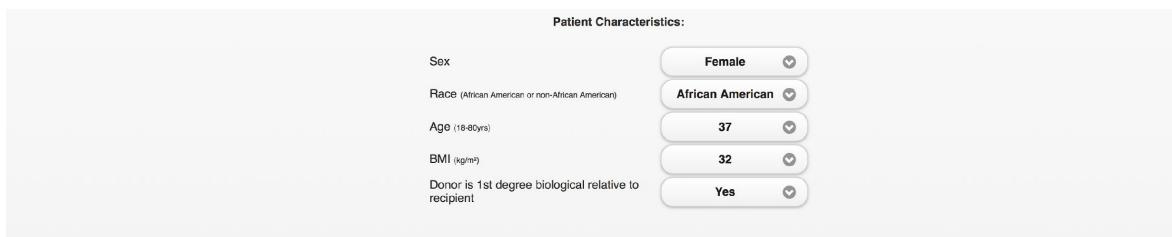
Risk of End-Stage Renal Disease Following Live Kidney



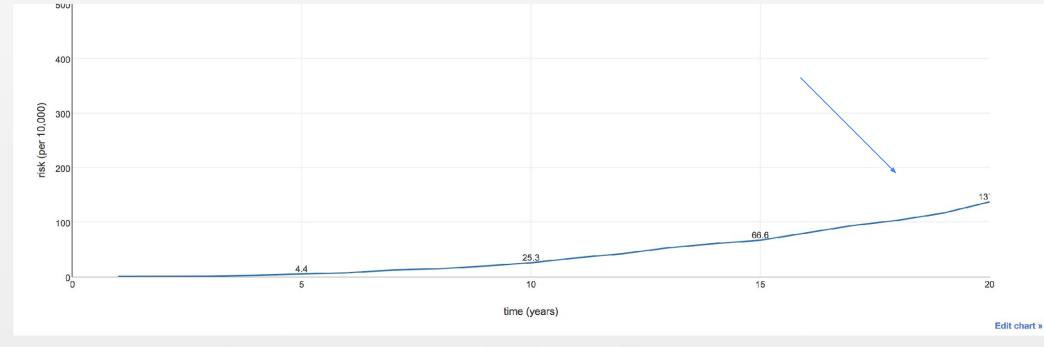
JAMA. 2014;311(6):579-586. doi:10.1001/jama.2013.285141

Figure 1. Cumulative Incidence of ESRD among Living Kidney Donors, per Death-Censored Kaplan-Meier Analysis

Wainright, AJT 2018. 123K US donors 1994-2016. 218 ESRD at 20 yrs. Donors were considered to have developed ESRD if we found a dialysis, waiting list, or transplant record for them in the OPTN database or CMS data



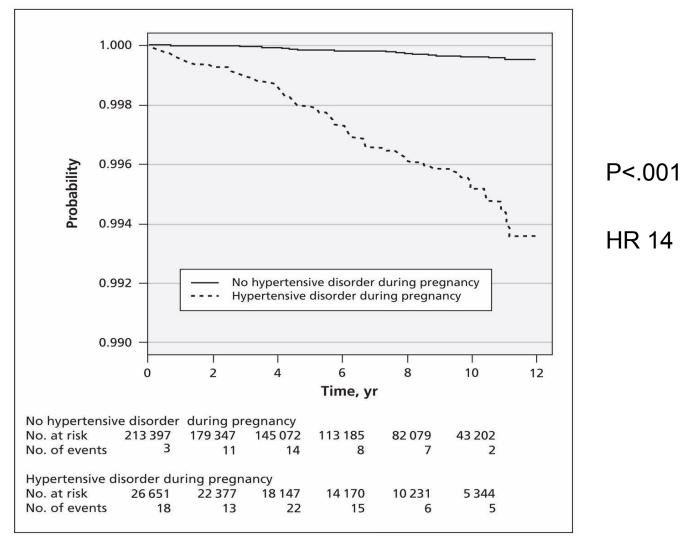
28


Black Male	20-year-old	5 (1-8)	24 (7-40)	62 (20-103)	111 (35-186)
	40-year-old	3 (1-4)	13 (6-21)	35 (16-53)	63 (29-96)
	60-year-old	1 (0-3)	8 (1-14)	20 (3-36)	35 (5-65)
Black Female	20-year-old	3 (1-5)	14 (4-23)	35 (11-59)	63 (19-107)
	40-year-old	2 (1-2)	8 (3-12)	20 (9-30)	36 (17-55)
	60-year-old	1 (0-2)	4 (1-8)	11 (2-21)	20 (3-37)
White Male	20-year-old	1 (0-1)	3 (1-5)	7 (3-12)	13 (5-22)
	40-year-old	1 (0-1)	5 (2-7)	12 (6-17)	21 (11-31)
	60-year-old	1 (0-2)	7 (3-11)	19 (8-30)	34 (14-54)
White Female	20-year-old	0 (0-1)	2 (1-3)	4 (2-7)	8 (3-13)
	40-year-old	1 (0-1)	3 (1-4)	7 (4-10)	12 (7-18)
	60-year-old	1 (0-1)	4 (2-6)	11 (5-17)	20 (9-30)
		5-Year	10-Year Time Sind	15-Year ce Donation	20-Year

Wainright, AJT 2018. 123K US donors 1994-2016. 218 ESRD

Calculating Risk: Live donor risk calculator for ESRD

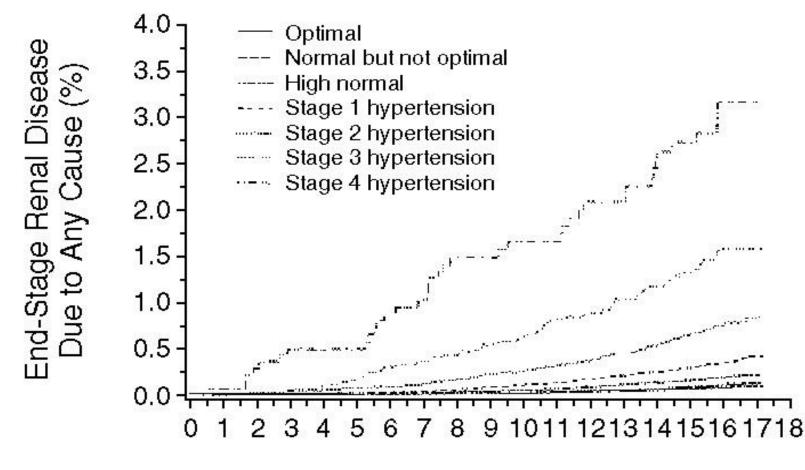
Risk of Developing ESRD for Adults Who Previously Donated a Kidney (per 10,000)

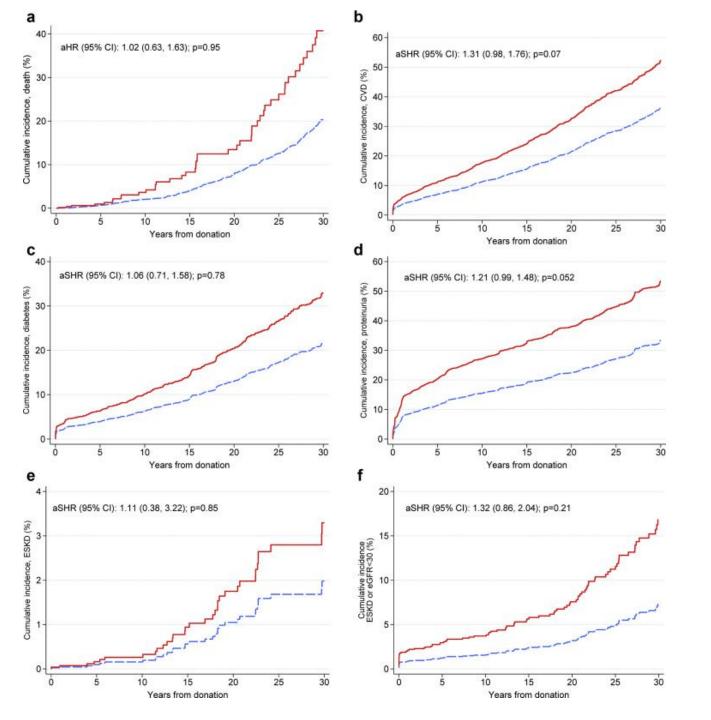

These numbers represent the number of living kidney donors (per 10,000) who will develop ESRD in 5, 10, 15 and 20 years since their donation.

http://www.transplantmodels.com/donesrd/. Massie, et al. JASN 2017. 130 K donors, 1987-2014

Case

- 37 yr old AA female, mother of 2, wishing to donate to her father (DM).
- Had gestational HTN 10 years ago. BP now is 140/90.


Estimated proportion of women without ESRD among those with and without hypertensive disorders during pregnancy 1996-2009.


Wang I et al. CMAJ 2013;185:207-213

Incidence of ESRD according to Blood-Pressure Category in 332,544 Men Screened for MRFIT

Years since Screening

1963-2007: 8922 kidney donors from 3 U.S. transplant centers: the University of Minnesota, Mayo Clinic-Rochester, and the University of Alabama-Birmingham. 900 with HTN 140/90 or on meds. Avg F/U 14-17 years

Cumulative incidence of major outcomes. (a) Mortality. (b) Cardiovascular disease (CVD). (c) Diabetes. (d) <u>Proteinuria</u>. (e) End-stage kidney disease (ESKD). (f) Estimated <u>glomerular</u> <u>filtration</u> rate (eGFR) <30 ml/min/1.73m² or end-stage renal disease (ESRD). The red line indicates hypertensive donors and the dashed blue line indicates nonhypertensive donors

hypertensive donors, compared with nonhypertensive donors, are not at increased risk for reduced eGFR, proteinuria, or ESKD. (proteinuria:urine dipstick protein ≥2+, urine protein/osmolality ratio >0.42, urine random protein >15 mg/dl, or 24-hour protein >300 mg/day)

Ibrahim H., Hebert S., Murad D. Outcomes of hypertensive kidney donors using current and past hypertension definitions. *Kidney Int Rep.* 2021;6:1242–1253

Author, year	Mean follow-up length (over all or GDM/non-GDM)	Cumulative incidence of T2DM after GDM, %	RR (95% CI)	-		
Lee, 2007 [71]	2.2/8.6 years	7,4	3.6 (2.2-5.9)		Australia	-
Barden, 2013 [53]	10 years	15.2	15.1 (0.9-245)	We	Australia	
Ko, 1999 [72]	6 weeks	13.1	8.1 (3.8-17.2)	Western Padito	China	
Bian, 2000 [73]	5-10 years	33.3	13 (1.8-93.9)	adito	China	
Lee, 2008 [74]	2.1 years	11.5	4.5 (2.8-7.2)		Korea	-
Krishnaveni, 2007 [60]	5 years	37.1	22.7 (10.1-51.1	East	India	
Ferraz, 2007 [69]	6.2 years	8.6			Brazil	-
Morimitsu, 2007 [70]	16-24 weeks	30.4	1.3 (0.5-3.8) 7.5 (0.5-120.1)	thand that	Brazil	-
Mukerji, 2012 [54]	7.6 years	23.4	10.6 (10.3-10.8)		Canada	
Feig, 2008 [68]	5.2 years	13.2	12.7 (12.2-13.2)		Canada	•
Cormier, 2015 [58]	3.5/3.8 years	18.7	15.3 (2.1-109.7)	lorth A	Canada	
Gunderson, 2007 [65]	20 years	25.9	3.9 (2.9-5.2)	merica	US	-
Benjamin, 1993 [75]	4.8/5.5 years	29.8	4.7 (1.4-15.2)	and C	US	
Wang, 2012 [55]	8.6 years	28.6	5.1 (4.5-5.6)	North America and Caribbean	US	-
O'Sullivan, 1984 [66]	22-28 years	36.4	6.6 (4.2-10.5)	85	US	
Osei, 1998 [67]	7 years	66.7	47.3 (3-757.3)		US	
Damm, 1994 [76]	7.5 years	13.7	16.1 (1-258.1)		Denmark	
Jarvela, 2006 [61]	5.7/6.1 years	5.3	47.0 (2.9-771.7)		Finland	
Vambergue, 2008 [77]	6.75 years	18.0	19.9 (2.8-142.5)		France	
Hummel, 2013 [56]	5.5 months	7.6	2.7 (0.2-45.1)		Germany	-
Rottenkolber, 2015 [59]	9,1/8.7 months	2.1	2.7 (0.1-54.08)		Germany	
Madarasz, 2008 [78]	3.6/8.1 years	30.9	24.9 (1.6-400.6)	Europe	Hungary	
Pintaudi, 2015 [57]	5.4 years	20.1	18.1 (15.1-21.8)		Italy	-
Albareda, 2003 [79]	6.2 years	6.3	9.1 (0.6-146.3)		Spain	• •
Persson, 1991 [64]	3-4 years	3.4	3.2 (0.2-55.8)		Sweden	
Aberg, 2002 [63]	l year	9.2	5.6 (0.8-40.7)		Sweden	-
Linne, 2002 [62]	15 years	35.7	38.4 (2.3-631.7)		Sweden	

Case

- 37 yr old AA female, mother of 2, wishing to donate to her father (DM). Her BP was high during her last pregnancy 10 years ago. BP now is 140/90.
- She wants to know if there is any genetic testing to predict ESRD in her?

Genes	Genetic kidney diseases	Inherited patterns	Clinical signs
PKD1	ADPKD	AD	Age-specific imaging criteria in a person with a family history of ADPKD
PKD2			
GANAB			
ALG9			
DNAJ611			
APOLI	APOLI riskalleles	AR	Sub-Saharan African ancestors with early- onset CKD and ESKD
COL4A5	X-linked Alport syndrome	XL	Progressive kidney failure Sensorineural hearing loss Ocular abnormalities
COL443 and/or COL4A4	Autosomai recessive Alport syndrome	AR	Microscopic hematuria Proteinuria Ocular involvement Sensorineural hearing loss
COL4A3 or COL4A4	Autosomal dominant Alport syndrome	AD	Microscopic hematuria, proteinuria without ocular or hearing abnormalities
COL4A3 or COL4A4	Thin basement membrane disease	AD	Microscopic hematuria Gross hematuria Flank pain AKI Proteinuria
CFH, MCP, CR, or C3	Pregnancy-associated aHUS		History of microangiopathic hemolytic anemia, thrombocytopenia, AKI

AD, autosomal dominant; ADPKD, autosomal dominant polycystic kidney disease; aHUS, atypical hemolytic uremic syndrome; AKI, acute kidney injury; ALG9, asparagine-linked glycosylation 9; APOL1, Apolipoprotein L1; AR, autosomal recessive; CFH, complement factor H; CFI, complement factor I; CKD, chronic kidney disease; COL4A3, collagen type IV alpha 3 chain; COL4A4; collagen type IV alpha 4 chain; COL4A5, collagen type IV alpha 5 chain; C3, complement component 3; DNAJ811, DnaJ homolog subfamily 8 member 11; ESKD, end-stage kidney disease; GANA8, glucosidase II alpha subunit; MCP, membrane cofactor protein; PKD1, polycystin 1, transient receptor potential channel interacting; PKD2, polycystin 2, transient receptor potential cation channel; XL, X-linked.

Kidneys from African American deceased-donors have shorter allograft survival and African American living-kidney donors more often develop ESRD. Kidney International Reports, Volume 5, Issue 3, March 2020

Nephron 2021 https://doi.org/10.1159/000520150

Score	Baseline Fasting Glucose	Family History of DM	Family History of HTN	Obese at Baseline (BMI ≥30)	Baseline eGFR 90-99	APOL1 Risk Variants	Regular Smoking	25-year Risk (95% CI)
18	Normal	None	None	No	No	0	No	0.90% (0.43-1.36)
22	Normal	None	None	No	No	1	No	1.14% (0.60-1.69)
35	Normal	None	None	No	No	2	No	2.53% (1.59-3.45)
27	Normal	None	None	No	No	0	Yes	1.55% (0.89-2.22)
31	Normal	None	None	No	No	1	Yes	1.98% (1.20-2.76)
44	Normal	None	None	No	No	2	Yes	4.35% (2.89-5.79)
29	Normal	None	Yes	No	No	0	No	1.75% (1.03-2.47)
33	Normal	None	Yes	No	No	1	No	2.24% (1.38-3.09)
46	Normal	None	Yes	No	No	2	No	4.90% (3.27-6.51)
30	Normal	None	None	Yes	No	0	No	1.86% (1.11-2.61)
34	Normal	None	None	Yes	No	1	No	2.38% (1.48-3.26)
47	Normal	None	None	Yes	No	2	No	5.21% (3.47-6.91)
36	Impaired	None	None	No	No	0	No	2.68% (1.71-3.65)
40	Impaired	None	None	No	No	1	No	3.42% (2.24-4.58)
53	Impaired	None	None	No	No	2	No	7.44% (4.87-9.94)
36	Normal	None	None	No	Yes	0	No	2.68% (1.71-3.65)
40	Normal	None	None	No	Yes	1	No	3.42% (2.24-4.58)
53	Normal	None	None	No	Yes	2	No	7.44% (4.87-9.94)
42	Normal	Yes	Yes	No	No	0	No	3.86% (2.55-5.15)
46	Normal	Yes	Yes	No	No	1	No	4.90% (3.27-6.51)
59	Normal	Yes	Yes	No	No	2	No	10.58% (6.62-14.36)

Estimated 25-year Risk of CKD Among **18-year-old AA Male** potential Living Kidney Donor

Locke, at al Apolipoprotein L1 and Chronic Kidney Disease Risk in Young Potential Living Kidney Donors. Ann Surg. 2017 Feb 9. Healthy non donors, 25 yrs, CKD3 or worse (rare ESRD). FH of DM alone is 3.8%, Caucasian male is 2.2%, female 1.2%

Integrating *APOL1* Gene Variants Into Renal Transplantation: Considerations Arising From the American Society of Transplantation Expert Conference, AJT 2017, cont'

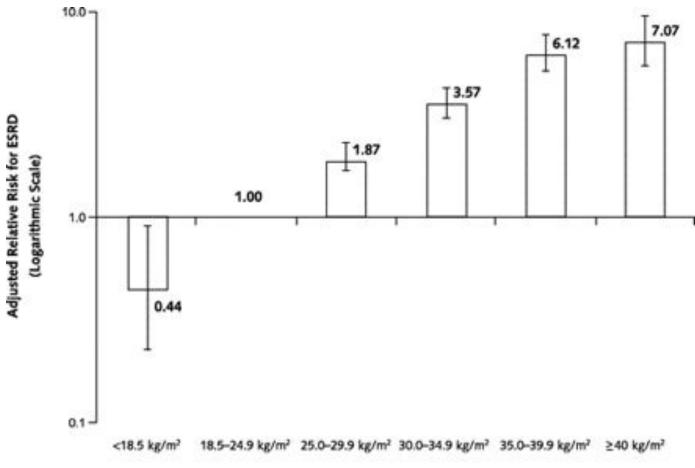
Inform potential donors of the risk of psychological stress and anxiety that may accompany knowledge of whether they, and potentially their children, express two *APOLi* risk alleles.

Offer APOLI genetic testing to those potential living donors who wish to know their status, with the cost of testing to be included as part of the evaluation.

For those found to have two APOLI risk alleles, use the information as one would other findings (e.g. prehypertension/hypertension, presence of the metabolic syndrome or impaired glucose tolerance, obesity, or smoking) as one consideration in the final recommendation as to their medical suitability for living kidney donation. Other factors that may affect this recommendation are the potential donor's age and a family history of ESRD with an early age of onset that was not related to diabetes mellitus.

KDIGO 2017

"Apolipoprotein L1 (APOL1) genotyping may be offered to donor candidates with sub-Saharan African ancestors. Donor candidates should be informed that having 2 APOL1 risk alleles increases the lifetime risk of kidney failure but that the precise kidney failure risk for an affected individual after donation cannot currently be quantified"



2019-2023. APOL1 assessed in all black live and deceased donors. Recipient and donor outcomes

Case

- 37 yr old AA female, mother of 2, wishing to donate to her father (DM). Her BP was high during her last pregnancy 10 years ago. BP now is 140/90.
- Her BMI is 32.

BMI and Risk ESRD

BMI Category

320 252 Kaiser Permanente pts between 1964 and 1985. But RR lower when adjusted for DM: 4 and not 6.12. (ESRD rate here 0.4%)

Hsu, et al. Body Mass Index and Risk for End-Stage Renal Disease. Ann Intern Med. January 3, 2006 vol. 144 no. 1 21-28

Obesity increases the risk of end-stage renal disease among living kidney donors (120 K donors)

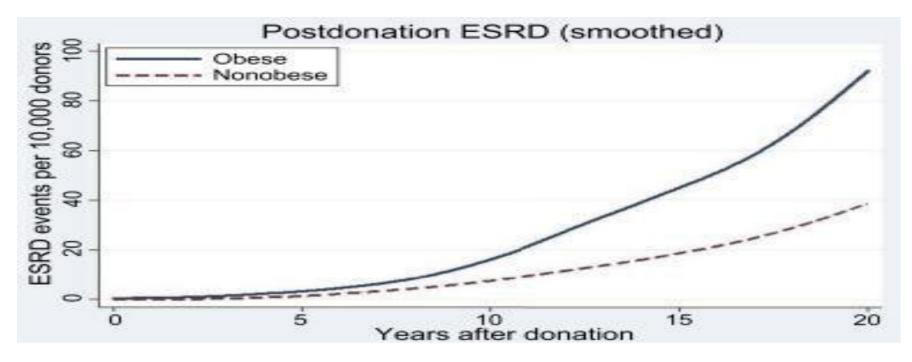
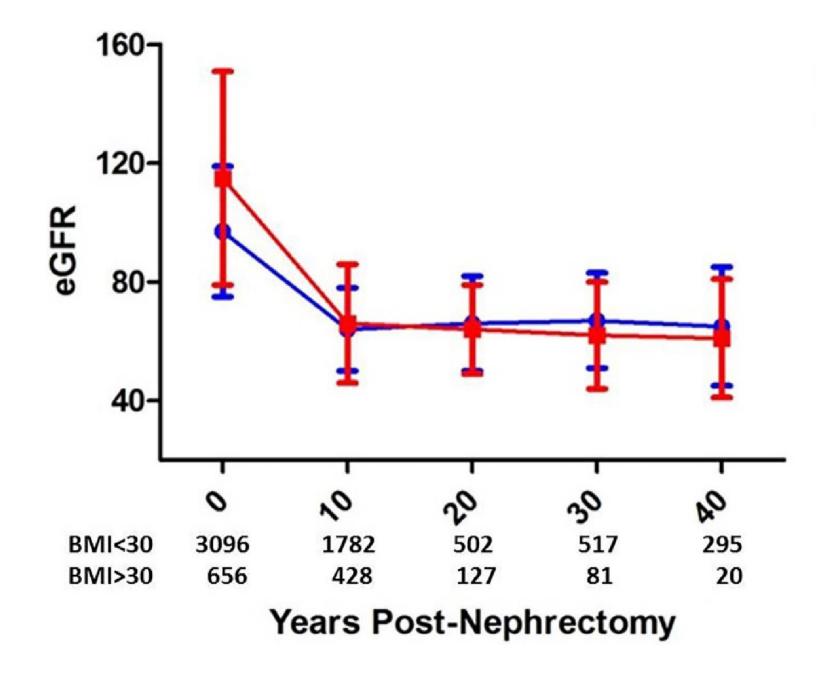
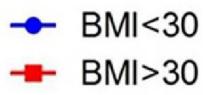
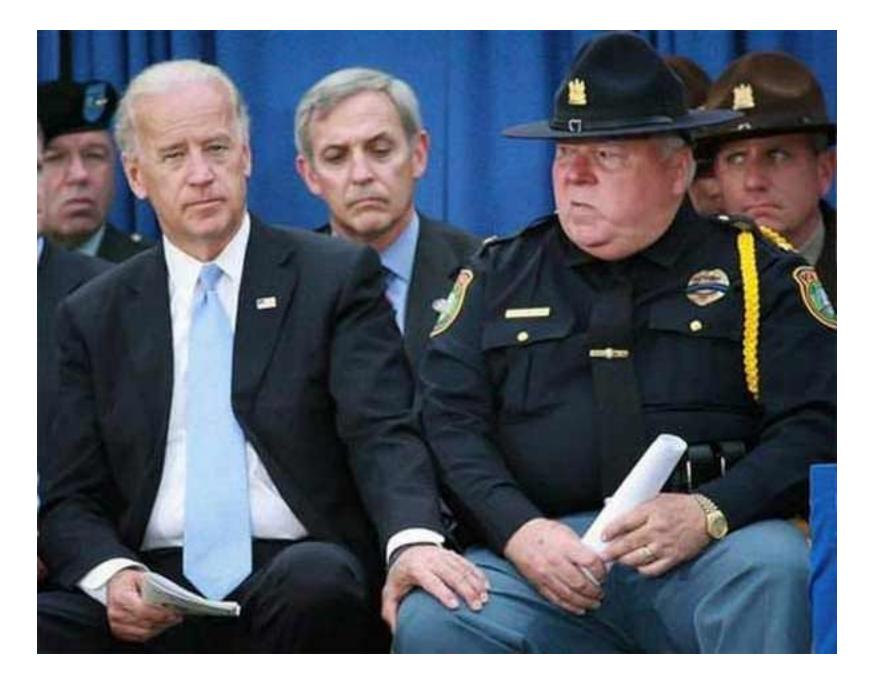
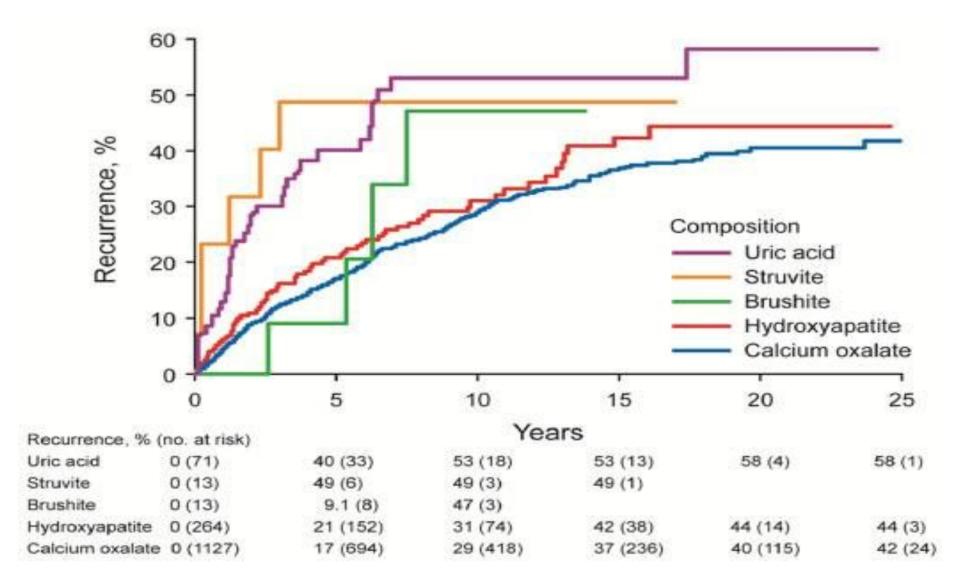




Figure 1. Cumulative incidence of postdonation end-stage renal disease (ESRD) events among living kidney donors by obesity status at time of donation.


**BMI 33 vs 25: 0.9% vs 0.4 % ESRD at 20 yrs

Jayme E. Locke, Rhiannon D. Reed, Allan Massie, Paul A. MacLennan, Deirdre Sawinski, Vineeta Kumar, Shikha Mehta, Roslyn B. Mannon, Robert Gaston, Cora E. Lewis, Dorry L. Segev Kidney International, Volume 91, Issue 3, 2017, 699–703


Serrano OK, et al. Transplantation. Nov 2018 (Univ Minn)

Case

- 37 yr old AA female, mother of 2, wishing to donate to her father (DM). Her BP was high during her last pregnancy 10 years ago. BP now is 140/90. Her BMI is 32.
- CT angio reveals 4 mm stone in left kidney.

Recurrence rate of stones

Singh P, et al. Mayo clinic Proceedings 2015

Donors with Stones

Donor Study	# donors	Stone prevalence	Stone size (avg)	Stone events	
				In donors	
Lorenz, 2011	1957	9.7%			
Chu, 2012	654	4.4%			
Olsburgh, 2013	377	5%	3mm	None at 2.1 yr follow up	
		(20 donated)	(range 2–12)		
Kim, 2012	325	7.4%	2mm	None at 1 yr	
		(16 donated)	(range 1–9)	(1 recipient had obstruction)	
Rizjkala, 2013	732	7.3%	2.4 mm	1 donor event at 1.8 yrs	
		(54 donated)	(range 1–6)	,	

Stones in the RELIVE study:

200 donors had kidney stones prior to donation. 142 were left with a stone

After 16.5 \pm 10.9 years (range 0-44 years) from donation to study close, no ESKD occurred in donors with stones. The multivariable risks of hypertension, proteinuria, and reduced GFR were similar in donors with and without kidney stones.

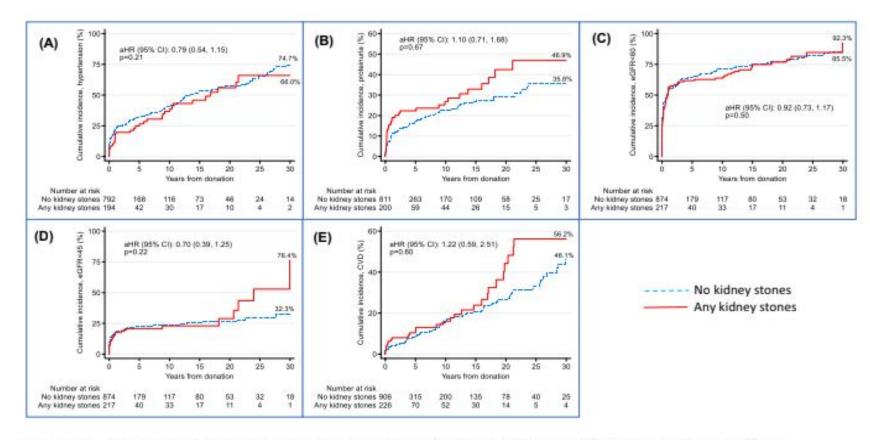
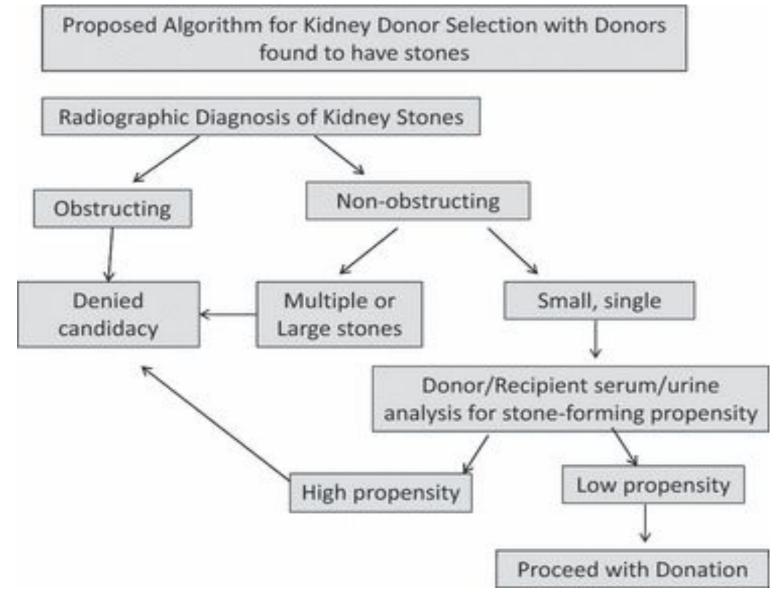


FIGURE 2 Cumulative incidence of individual outcomes. (A) Hypertension. (B) Proteinuria. (C) eGFR < 60 ml/min/1.73m². (D) eGFR < 45 ml/min/1.73 m². (E) Cardiovascular disease

Clin Transplant. 2021 Feb;35(2):e14189. Ibrahim

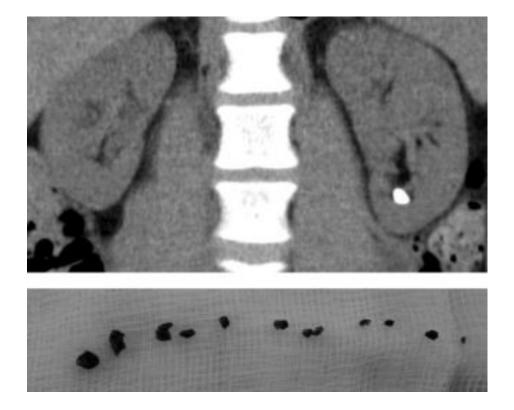
Use this calculator to predict the risk of a second symptomatic kidney stone after the first symptomatic stone.


First symptomatic stone? Yes \$ Age (yrs) Gender Female \$ Race Not Caucasian 🗘 Family history of kidney stones? * No Gross hematuria? * No Uric acid composition? No \$ Imaging performed? No * Symptomatic ureterovesical junction stone (on imaging) No Symptomatic renal pelvic or lower pole stone? (on imaging) No Concurrent asymptomatic stone? (on imaging) No Prior incidental (asymptomatic) stone? No 🛊 Prior suspect kidney stone event (no stone seen) No 🛊 Submit

\$

\$

\$


Incidental kidney stones

Clinical Transplantation (Melcher)

Volume 26, Issue 4, pages 558-563, 14 DEC 2011 DOI: 10.1111/j.1399-0012.2011.01567.x http://onlinelibrary.wiley.com/doi/10.1111/j.1399-0012.2011.01567.x/full#f2

Incidental renal stones in potential live kidney donors: (Laser fragmentation of large stone predonation)

Incidental renal stones in potential live kidney donors- role of *ex vivo* ureteroscopy

Case

- 37 yr old AA female, mother of 2, wishing to donate to her father (DM). Her BP was high during her last pregnancy 10 years ago. BP now is 140/90. Her BMI is 32. CT angio reveals 4 mm stone in left kidney.
- U/A shows >5 RBCs repeatedly.

Microscopic Hematuria

10 potential donors with micro hematuria were biopsied

I IGAN, 4 Thin BM disease, 2 NI, 1 HTN changes, 2 other.

□ 4/10 ended donating (2 Nls, 2 TBMD)

Koushik R, et al, Transplantation, 2005

Microscopic Hematuria

45 biopsies:

62 % normal

29% TBM

9% IgAN

Transplantation Proceedings, 2017-10-01, Volume 49, Issue 8, Pages 1729-1732

Case

- 37 yr old AA female, mother of 2, wishing to donate to her father (DM). Her BP was high during her last pregnancy 10 years ago. BP now is 140/90. Her BMI is 32. CT angio reveals 4 mm stone in left kidney. U/A shows 5 RBCs repeatedly.
- Fasting glucose 108.

Spectrum of DM

		Hyperglycemia				
		Pre-diabetes	Diabetes Mellitus			
Type of Diabetes	Normal glucose tolerance	Impaired fasting glucose or impaired glucose tolerance	Insulin Insulin Not required required insulin for for requiring control survival			
Type 1			>			
Type 2			\rightarrow			
Other specific types			\rightarrow			
Gestational Diabetes			>			
Time (years)		-	├			
FPG	<5.6 mmol/L	5.6-6.9 mmol/L	≥7.0 mmol/L			
	(100 mg/dL)	(100-125 mg/dL)	(126 mg/dL)			
2-h PG	<7.8 mmol/L	7.8-11.1 mmol/L	≥11.1 mmol/L			
	(140 mg/dL)	(140–199 mg/dL)	(200 mg/dL)			

Source: Fauci AS, Kasper DL, Braunwald E, Hauser SL, Longo DL, Jameson JL, Loscalzo J: Harrison's Principles of Internal Medicine, 17th Edition: http://www.accessmedicine.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

Familial risk of DM

1 in 7 if one of your parents was diagnosed before the age of 50

1 in 13 if one of your parents was diagnosed after the age of 50

1 in 2, if both your parents have diabetes

Source: ADA 2017

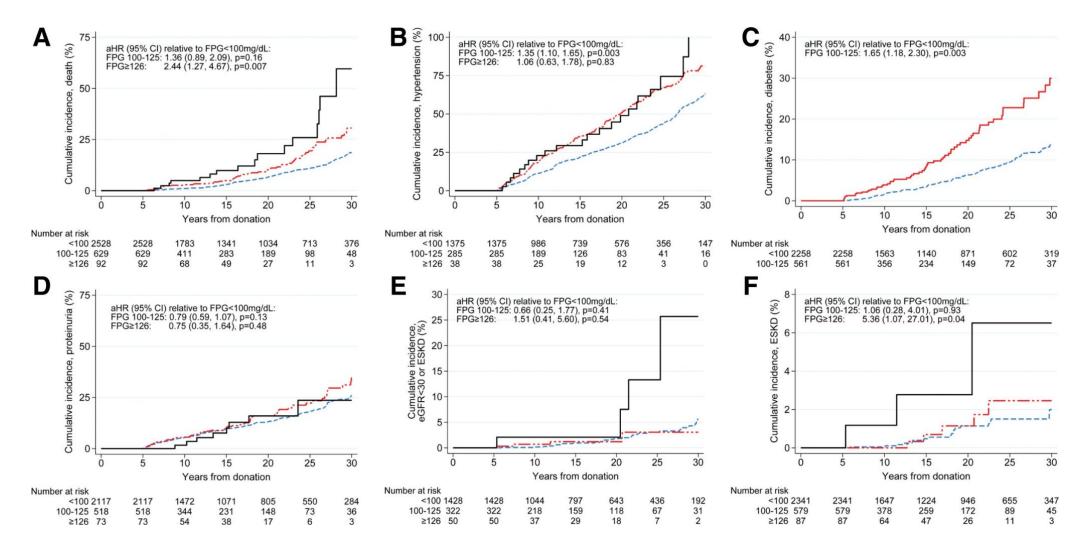
Pre-Diabetes: Donors with IFG

•143 donors with Impaired fasting glucose 1994-2007

•58% of IFG donors had reverted to normal fasting glucose at a mean follow-up of 10.4 years. Higher proportion of IFG donors had developed DM (15.56% vs. 2.2%, P=0.06). GFR and Ualb same

Prediabetic living kidney donors have preserved kidney function at 10 years after donation. <u>Chandran</u> <u>S1, Masharani U, Webber AB, Wojciechowski DM. 2014</u>

TABLE 2. - Outcomes of RELIVE study donors at study end in 2010–2012


Outcome, n (%)	Donors with data available	Events, n (%)	FPG <100 mg/dL (n = 6204)	FPG 100–125 mg/dL (n = 1826)	FPG ≥126 mg/dL (n = 250)	Overall P
Mortality	8280	362 (4.4)	272 (4.4) ^a	72 (3.9) ^a	18 (7.2) ^b	0.06
CVD	8266	1002 (12.1)	734 (11.9) ^a	232 (12.7) ^a	36 (14.5) ^a	0.32
Diabetes	7624	545 (7.1)	202 (3.5) ^a	93 (5.5) ^b	250 (100.0) ^c	<0.001
Hypertension	7469	2196 (29.4)	1566 (27.6) ^a	554 (35.3) ^b	76 (34.7) ^b	<0.001
Proteinuria	7446	1024 (13.8)	756 (13.6) ^a	247 (15.0) ^a	21 (9.5) ^b	0.06
eGFR <60 mL/min/1.73 m ²	8038	4498 (56.0)	3256 (53.9) ^a	1103 (62.6) ^b	139 (58.6) ^a , ^b	<0.001
eGFR <45 mL/min/1.73 m ²	8038	965 (12.0)	661 (10.9) ^a	270 (15.3) ^b	34 (14.3) ^a , ^b	<0.001
eGFR <30 mL/min/1.73 m ²	8038	55 (0.7)	39 (0.6) ^a	12 (0.7) ^a	4 (1.7) ^a	0.16
SKD	7739	41 (0.5)	29 (0.5) ^a	9 (0.5) ^a	3 (1.2) ^a	0.26
eGFR <30 mL/min/1.73 m ² or ESKD	8229	79 (1.0)	57 (0.9) ^a	17 (0.9) ^a	5 (2.0) ^a	0.22

IFG in donors Minnesota, Mayo, University of Alabama- 8922 live

kidney donations at the 3 centers from 1963 to 2007. F/U 17 years

Transplantation106(1):138-146, January 2022.

IFG in donors Minnesota, Mayo, University of Alabama- 8922 live kidney donations at the 3 centers from 1963 to 2007

Cumulative incidence of individual outcomes.aaAnalysis performed on donors having follow-up time \geq 5 y. (A) Mortality, (B) hypertension, (C) diabetes, (D) proteinuria, (E) eGFR <30 or ESKD, and (F) ESKD. Blue dashed lines indicate <100 mg/dL; red dashed lines indicate 100–125 mg/dL(22%); and black dashed lines indicate \geq 126 mg/dL.(3%)

Transplantation106(1):138-146, January 2022.

Case

- 37 yr old AA female, mother of 2, wishing to donate to her father (DM). Her BP was high during her last pregnancy 10 years ago. BP now is 140/90. Her BMI is 32. CT angio reveals 4 mm stone in left kidney. U/A shows 5 RBCs repeatedly. A1C is 5.9%.
- She wants another baby 1 year after donation.

Pregnancy

Fetal and maternal outcomes in 98 donors with both pre- and post-donation pregnancies

	Pre-donation pregnancies (n=204)	Post-donation pregnancies (n=173)
Fetal outcomes		
Full-term birth	146(71.6%)	116(67.1%)
Prematurity	15(7.4%)	15(8.7%)
Fetal loss	43(21.1%)	42(24.3%)
Death	2(4.7%)	1(2.4%)
Miscarriage	33(76.7%)	36(85.7%)
Abortion	8(18.6%)	5(11.9%)
Maternal outcomes		
Gestational diabetes	1(0.5%)	1(0.6%)
Gestational hypertension	1(0.5%)	6(3.5%)
Preeclampsia or toxemia	1(0.5%)	6(3.5%)
Proteinuria	4(1.5%)	8(4.6%)

Within the same woman, there was no difference in the odds of premature delivery or fetal loss. However, the odds of adverse maternal outcomes in post-donation pregnancies significantly increased.

Ibrahim HN, et al. Pregnancy Outcomes after Kidney Donation, AJT 2009

Maternal and Fetal Outcomes in Living Kidney Donors and Matched Non-donors.

Table 3. Maternal and Fetal Outcomes of Pregnancies after Cohort Entry in Living Kidney Donors and Matched Nondonors.					
Outcome	Pregnancies in Donors (N=131)	Pregnancies in Nondonors (N=788)	Odds Ratio (95% CI)	P Value*	
	no. of e	events (%)			
Primary outcome: gestational hypertension or preeclampsia	15 (11)	38 (5)	2.4 (1.2–5.0)	0.01	
Secondary outcomes					
Gestational hypertension†	7 (5)	17 (2)	2.5 (0.9–6.5)	0.06	
Preeclampsia	8 (6)	21 (3)	2.4 (1.0–5.6)	0.05	
Cesarean section	41 (31)	224 (28)	1.2 (0.7–2.1)	0.44	
Postpartum hemorrhage	≤5 (≤4)‡	24 (3)	0.9 (0.3–2.9)	0.91	
Preterm birth with gestation of <37 wk	10 (8)	52 (7)	1.2 (0.5–2.5)	0.70	
Low birth weight of <2500 g	8 (6)	31 (4)	1.7 (0.7–4.0)	0.21	

* P values were derived from random-effects logistic-regression models for binary outcome data, accounting for the correlation structure within matched sets and in women with multiple pregnancies.

† When diagnostic codes for both gestational hypertension and preeclampsia were present in a given pregnancy, the outcome was counted as a diagnosis of preeclampsia.

‡ To comply with privacy regulations for minimizing the chance of identification of a study participant, numbers of participants are suppressed in the case of 5 or fewer participants (reported as ≤5).

Case

- 37 yr old AA female, mother of 2, wishing to donate to her father (DM). Her BP was high during her last pregnancy 10 years ago. BP now is 140/90. Her BMI is 32. CT angio reveals 4 mm stone in left kidney. U/A shows 5 RBCs repeatedly. A1C is 5.9%. She wants another baby 1 year after donation.
- It is found that her father actually has PKD (in addition to DM).

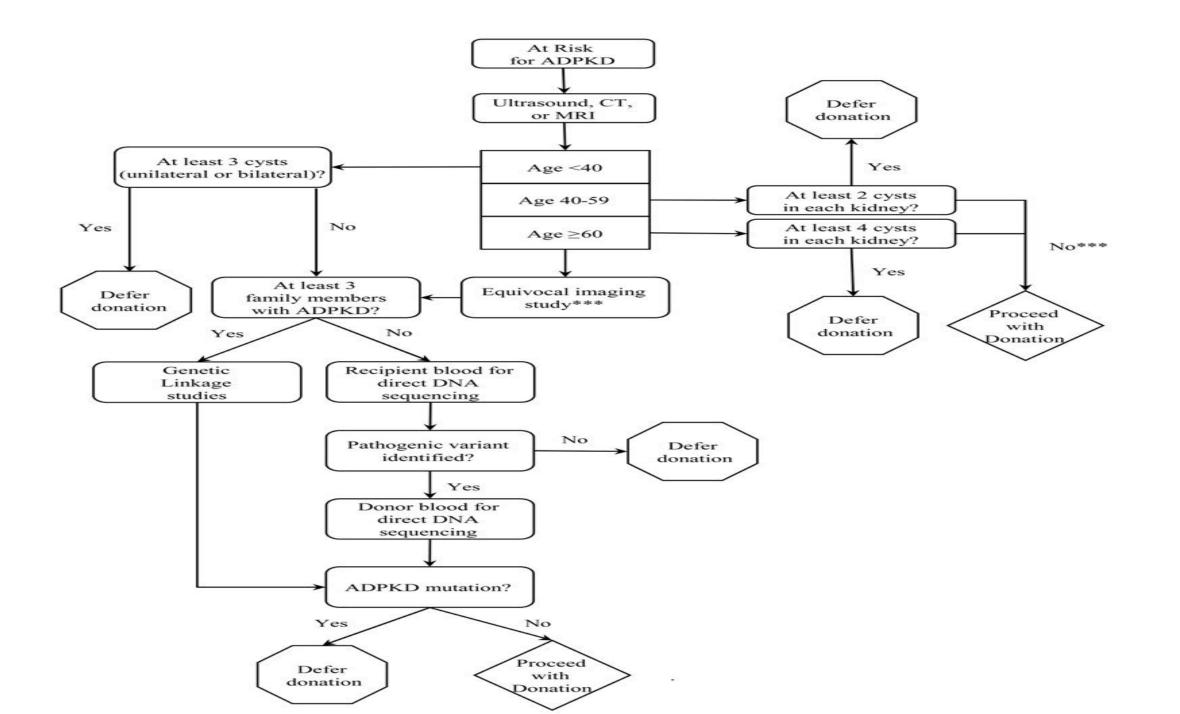
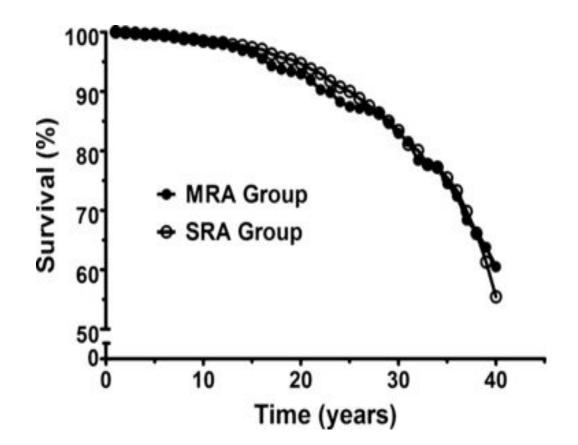

Donors at risk for PKD

Table 1

Ultrasound Criteria for Diagnosis of ADPKD in Patients at 50% Risk of PKD1 Inheritance (Adapted from Pei, et al. (9))

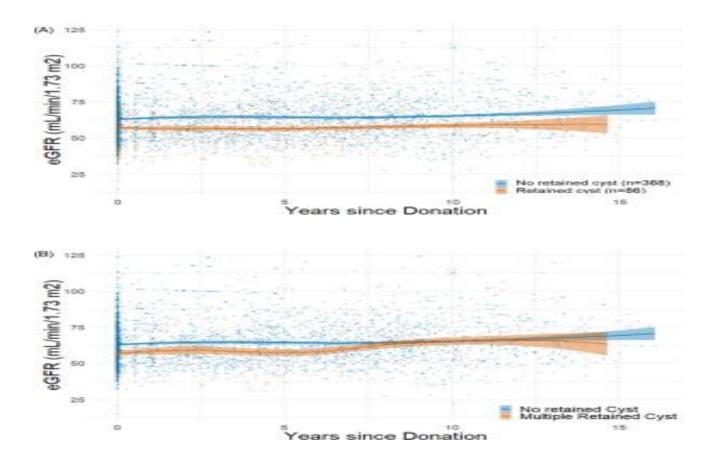
Age	Diagnostic Criteria by Ultrasound
<40	At least 3 renal cysts (unilateral or bilateral)
40–59	At least 2 renal cysts in each kidney
≥60	At least 4 renal cysts in each kidney

Huang E, et al. DNA Testing For Live Kidney Donors At Risk For Autosomal Dominant Polycystic Kidney Disease. Transplantation, 2009.



Case

- 37 yr old AA female, mother of 2, wishing to donate to her father (DM). Her BP was high during her last pregnancy 10 years ago. BP now is 140/90. Her BMI is 32. CT angio reveals 4 mm stone in left kidney. U/A shows 5 RBCs repeatedly. A1C is 5.9%. It is found that her father actually has PKD.
- Her CT shows 3 renal arteries on right and 1 renal artery on left and on 2 cm simple cyst on right.


Outcome of living kidney donors left with multiple renal arteries

(1200 donors with MRA, 15 yr f/u, no change in HTN, proteinuria, or GFR)

Volume 26, Issue 1, pages E7-E11, 23 OCT 2011 DOI: 10.1111/j.1399-0012.2011.01548.x http://onlinelibrary.wiley.com/doi/10.1111/j.1399-0012.2011.01548.x/full#f2(Uminn)

Cysts in the remaining kidney

A, Postdonation estimated glomerular filtration rate (eGFR) trajectory among donors with vs without retained renal cysts. *B*, Postdonation estimated glomerular filtration rate (eGFR) trajectory among donors with vs without multiple retained renal cysts

Long-term renal function in living kidney donors with simple renal cysts: A retrospective cohort study. By: Waldram, Madeleine M., Thomas, Alvin G., Yu,....Segev, Dorry L., Massie, Allan B., Clinical Transplantation, 09020063, Sep2020, Vol. 34, Issue 9

Summary of the risks of living kidney donation

Perioperative risk	Perioperative risk relatively low: major complications around 2.5%; overall risk between 7 and 17%, mainly bleeding and infection. Increased risk conferred by black ethnicity, obesity, haematological disorders, psychiatric conditions and robotic nephrectomy.
Mortality	Short-term (90 day) mortality risk: 3.1 in 10,000. Long-term mortality equivalent to control populations; one study reports higher mortality after very long-term (25-year) follow-up.
End-stage kidney disease	Overall prevalence low, but 3–5 times higher than in well-matched controls. Increased risk conferred by younger age, black ethnicity, male gender, lower GFR, smoking history and the presence of hypertension, albuminuria, obesity or diabetes.
Hypertension and cardiovascular risk	Some studies report a 2–4-fold increased risk of hypertension. Increased risk conferred by black ethnicity. No significantly increased risk of cardiovascular events.
Gout	Slightly increased risk of gout post-donation but similar to the general population. Increased risk conferred by male gender and black ethnicity.
Metabolic bone disease	Observed differences in PTH, vitamin D3 and FGF-23 but no difference in pathological events.
Psychological outcomes	Reduced HRQoL in the first 3 months, which improves by 12 months after donation. Reduced HRQoL associated with obesity, history of psychiatric difficulty and non-white race. Education, older age and first-degree relation to the recipient are protective factors.
Kidney stone	Donors with no metabolic abnormality and small kidney stones may safely donate.
Obesity	Slightly increased risk of infection and operative time. Increased incidence of hypertension and diabetes. Possible longer-term increased risk of ESKD and mortality.
Black race	Higher relative risk of hypertension, CKD and ESKD. Increased risk of gout. Increased perioperative risk.
Pregnancy	2.4-fold higher risk of gestational hypertension and pre-eclampsia. No adverse effect on foetal or maternal outcomes.

Thank you for your attention......

Risk of End-Stage Renal Disease Following Live Kidney Donation (97,000 donors vs healthy nondonors). USA Study

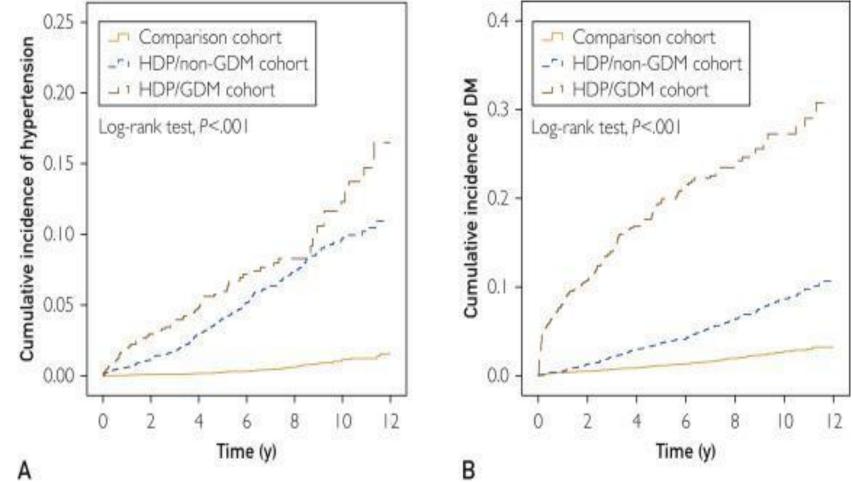
General population lifetime risk for ESRD: 3.2%

Donor ESRD: 0.9%

Nondonor ESRD: 0.14%

JAMA. 2014;311(6):579-586

Diabetic Nephropathy in African Americans


Type 2 diabetes mellitus is 1.4 to 2.2 times more prevalent in African Americans than whites.

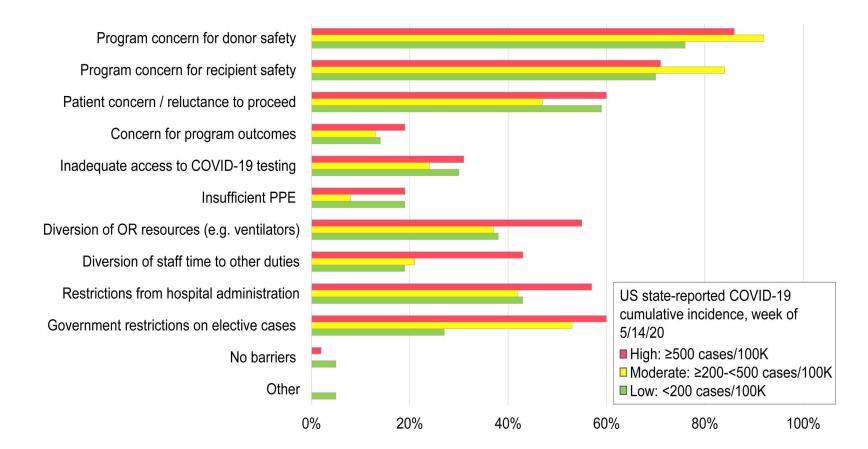
Plus higher rates of micro- vascular complications.

2-3 X rate of ESRD than whites

Current Diabetes Reports 2004, 4:455–461

Risk of Subsequent Hypertension and Diabetes in Women With Hypertension During Pregnancy and Gestational Diabetes

Lien-Jen, et al. Mayo Clinic Proceedings, 2016 1200 both, 5000 1, 12000 none.


Terms and Conditions

Micosroscopic hematuria

- Of 242 Japanese donors, 20 had persistant dysmorphic hematuria (>5 RBCs) pre-donation.
- 2 year follow up looking at proteinuria, GFR:
 5-6 X risk of proteinuria; decr in GFR

Kido, et al. Persistent Glomerular Hematuria in Living Kidney Donors Confers a Risk of Progressive Kidney Disease in Donors After Heminephrectomy. AJT 10(7): 1597–1604, July 2010

Kidney Transplantation During the COVID-19 Pandemic

Summary of medically complex donor

□ HTN

□ Obesity

□ Stone

Hematuria

□ Pre-diabetes

□ Pregnancy

D PKD risk

□ Multiple arteries

□ AA race (Apol1)